GCE A LEVEL MARKING SCHEME

SUMMER 2017

A LEVEL (NEW)
PHYSICS - COMPONENT 2
A420U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (except for the extended response question).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

```
cao = correct answer only
ecf = error carried forward
bod = benefit of doubt
```

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
1	(a)			Electrical energy (or work) transferred [to other forms] per unit [accept coulomb] of charge [passing between the two points]	1			1		
	(b)		$\begin{align*} & \text { Either: } I \text { in circuit }=\frac{2.4}{160}(1)[=15.0 \mathrm{~mA}] \\ & \begin{aligned} R_{\text {Thermistor }} & =\frac{12.0-2.4)(1)}{15.0 \times 10^{-3}}[\text { ecf on } I] \\ & =640[\Omega] \end{aligned} \\ & \text { Or: } R_{\mathrm{T}}=\frac{9.6(1)}{2.4} \times 160(1) \text { or } 2.4=\frac{12 \times 160}{160+R_{\mathrm{T}}} \\ & =640[\Omega] \tag{2} \end{align*}$	1			3	3		
	(c)	(i)	[Resistance of thermistor decreases as temp increases] pd across thermistor decreases (1) So pd across fixed resistor increases because: Either - ratio of pds across potential divider changes Or - total pd must $=12.0 \mathrm{~V}$ (or equivalent) (1) Alternative: [Resistance of thermistor decreases as temp increases] so circuit current increases (1) So pd across fixed resistor increases because $V=I R$ and R is constant or $V \propto I(1)$		2		2			

© WJEC CBAC Ltd.

Question		Marking details	Marks available				Maths	Prac
			A01	AO2	AO3	Total		
(d)		More effective at $0^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}$ (no mark) Because: Steeper gradient / larger change in resistance (1) Greater sensitivity in this range / greater [fractional] change in R per ${ }^{\circ} \mathrm{C}$ change in temperature or over the same temperature range) (1)			2	2		2
		Question 1 total	2	4	6	12	6	2

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
2	(a)	(i)		For Left Hand Combination: $\frac{1}{R_{\text {parallel }}}=\frac{1}{2 R}+\frac{1}{R}+\frac{1}{2 R}$ (RHS seen in any correct form e.g. $\left.\frac{4}{2 R}\right)(1)$ $=\frac{R}{2}(1)$ Total $R=\frac{R}{2}+R$ or $\frac{3 R}{2}$ seen Alternative solutions possible e.g. Sum of top and bottom branch $=R(1)$ Then parallel branch $=\frac{R}{2}(1)$ Total $R=\frac{R}{2}+R$		3		3	3	
		(ii)	Right hand resistor circled (1) Greatest current / greatest voltage (1)		2		2			
	(b)		Correct substitution into $l=\frac{R A}{\rho}$ i.e. $\frac{2.0 \times 10^{3} \times 250 \times 10^{-9} \times 0.25 \times 10^{-3}}{1.20 \times 10^{-6}}$ $l=0.10[\mathrm{~m}]$ (1) (ecf on slip in powers of 10)	1	1		2	2		

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
3	(a)			Electrons (or negative charges) are deposited on Z [and this plate becomes negatively charged] (1) Electrons (or negative charges) are removed from Y [and this plate becomes positively charged] (1)		2		2		2
	(b)	(i)	Initial pd across capacitor $=$ pd of cell (by implication) and correct application to show R or I		1		1		1	
		(ii)	Reference to resolution of voltmeter (1) which is too small to be plotted (1) (on given scale)			2	2		2	
		(iii)	Error bars [are $\pm 1 \mathrm{~s}$]		1		1		1	
		(iv)	Appropriate (corresponding) values from graph e.g. $V_{0}=6 \mathrm{~V}, V=4 \mathrm{~V}, t=13 \mathrm{~s}(1)$ Correct algebra $\left[V=V_{0} e^{-\frac{t}{c R}}\right]$ to show $t=32[\mathrm{~s}]$ (1) Alternative: Time constant $=0.37 V_{0}$ stated or implied or $V=2.2[2] \mathrm{V}$ (1) Time constant $=32$ [s] (1) Alternative: $T_{1 / 2}=0.69 R C$ $R C=31[\mathrm{~s}](1)$ Alternative: Initial gradient $=-\frac{V_{0}}{R C}=-\frac{6}{33}$ (tangent at $t=0$ intercepts time axis at $t=33 \mathrm{~s}$) (1) $R C=\frac{6 \times 33}{6}=33[\mathrm{~s}](1)$		2		2	2	2	

Question			Marking details	Marks available					Prac	
			AO1	AO2	AO3	Total	Maths			
4	(a)			Horizontal line[s] with direction indicated from X to Y	1			1		
	(b)	(i)	Substitution into $F=\frac{V e}{d}$ shown: $\frac{1800 \times 1.6 \times 10^{-19}}{3.2 \times 10^{-3}}$ $F=9.0 \times 10^{-14}[\mathrm{~N}](1)$	1	1		2	2		
		(ii)	[Gain in $E_{\mathrm{k}}=$ Work done by field] Gain in $E_{\mathrm{k}}=9.0 \times 10^{-14} \times 3.2 \times 10^{-3}(1)(\mathrm{ecf}$ on $F)$ Gain in $E_{\mathrm{k}}=2.88 \times 10^{-16} \mathrm{~J}$ unit mark (1) Alternative: $W=1.6 \times 10^{-19} \times 1800$ $W=2.88 \times 10^{-16} \mathrm{~J}$ unit mark (1) [Accept 1800 eV unit mark]	1	1		2	2		
		(iii)	$x=u t+1 / 2 a t^{2}$ and $u=0$ (all possible by implication) (1) $a=\frac{F}{m}$ and substitution step: ecf on F $\begin{equation*} \text { e.g. } t^{2}=\frac{2 \times 3.2 \times 10^{-3} \times 9.11 \times 10^{-31}}{9.0 \times 10^{-14}} \tag{1} \end{equation*}$ $t=2.54 \times 10^{-10}[\mathrm{~s}]$ Alternative: $1 / 2 m v^{2}=2.88 \times 10^{-16}$ to calculate v (1) Application of $x=\frac{(u+v) t}{2}$ (1) ecf on v $\begin{equation*} t=2.54 \times 10^{-10}[\mathrm{~s}] \tag{1} \end{equation*}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	3		
	(c)		F doubled (explained from $\frac{V e}{\frac{1}{2} d}$) $W=2 F \times \frac{d}{2}$ so no change Accept: $W=Q V$ and Q stated to be constant (1) so W remains unchanged (1)			2	2			
			Question 4 total	4	4	2	10	7	0	

Question			Marking details			Marks available				Maths	Prac			
			A01	AO2	AO3	Total								
5	(a)	(i)				Ben (ruler) Sarah (rod) 4×1 m	Advantage Easy to use/convenient / quicker Diameter measured accurately / greater accuracy	Disadvantage Inaccurate [only to $\pm 1 \mathrm{~mm}$] / reference to parallax errors / difficulty in supporting ruler / may touch spheres Diameter/radius of spheres need to be known beforehand / difficult to judge one complete rotation / difficult to measure angle [of rotation] / difficult to setup / thread overlapping ired from each cell.		4		4		4
		(ii)	Any $\times(1$	from: ins/markers on ruler Marker on cylinder easure diameter of Mark point at centre of ravelling microscope x the ruler close to s maller diameter rod se of Vernier caliper ept repeat readings	heres each sphere and use a measure the separation heres (for Ben)			1	1		1			

Question		Marking details	Marks available				Maths	Prac	
		A01	AO2	AO3	Total				
(b)	(i)		$\begin{align*} & F=9.81 \times 10^{-5} \mathrm{~N}(1) \\ & \text { Use of } F=\frac{9 \times 10^{9} Q_{1} Q_{2}}{r^{2}} \tag{1}\\ & Q_{1} Q_{2}=4.36 \times 10^{-18}\left[\mathrm{C}^{2}\right] \tag{1} \end{align*}$	1	1		3	3	3
	(ii)	$Q=\left(4.36 \times 10^{-18}\right)^{1 / 2}$ determined (or use of 4.4×10^{-18}) $=$ $2.09 \times 10^{-9} \mathrm{C}$ (1) Area under graph calculated: $3.2 \times 10^{-6} \times 0.65 \times 10^{-3}=$ $2.08 \times 10^{-9} \mathrm{C}$ (1) Alternative: Area, $Q=2.08 \times 10^{-9}(1)$ So $Q Q=\left(2.08 \times 10^{-9}\right)^{2}=4.3 \times 10^{-18} \mathrm{C}^{2}(1)$			2	2	2	2	
	(iii)	$n=\frac{2.09 \times 10^{-9}}{1.6 \times 10^{-19}}=1.31 \times 10^{10}$ electrons ecf on Q		1		1	1	1	
		Question 5 total	1	7	3	11	6	11	

Question		Marking details	Marks available				Maths	Prac	
		AO1	AO2	AO3	Total				
6 (a)			Line drawn from Sun to planet..... (1)will sweep out equal areas reference to $A_{1}=A_{2}=A_{3}$ (1)in equal time intervals / 6 months (1)	3			3		
(b)		$\begin{align*} & \frac{m v^{2}}{r}=\frac{G M m}{r^{2}}(1) \tag{1}\\ & v=\frac{2 \pi r}{T} \tag{1} \end{align*}$ Substitution and clear algebra step shown (1) Or : $\begin{aligned} & m r \omega^{2}=\frac{G M m}{r^{2}}(1) \\ & \omega=\frac{2 \pi}{T}(1) \end{aligned}$ Substitution and clear algebra step shown (1)	1	1		3	3		
(c)	(i)	$\begin{equation*} 1.45 \text { years }=4.573 \times 10^{7}[\mathrm{~s}](1) \tag{1} \end{equation*}$ Substitution into $\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$ i.e. $\frac{0.052}{486.14}=\frac{v}{3.0 \times 10^{8}}$ $\begin{aligned} & v=3.209 \times 10^{4}\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1) \\ & r=\frac{v T}{2 \pi}=\frac{3.209 \times 10^{4} \times 4.573 \times 10^{7}}{2 \pi} \\ & =2.34 \times 10^{11}[\mathrm{~m}] \end{aligned}$ Alternative for 4.573×10^{7} see $1.45 \times 86400 \times 365$	1	1 1 1		4	4		
	(ii)	Assumption CoM at/near centre of neutron star or M_{1} much greater than M_{2} (1) Either: $\begin{aligned} & M=\frac{v^{2} r}{G}(1) \\ & M=\frac{\left(3.209 \times 10 \mathrm{f} \times 2.34 \times 10 \quad{ }^{11}\right.}{6.67 \times 10^{-11}} \text { (substitution) (1) ecf on } v \\ & M=3.6 \times 10^{30}[\mathrm{~kg}] \text { and valid conclusion (1) } \end{aligned}$							

Question		Marking details			Marks available			

Question				Marking details	Marks available				Maths	Prac	
				A01	AO2	AO3	Total				
7	(a)	(i)			Potential at infinity $=0 \quad$ (1) Work done on object to get to infinity, [therefore initial energy must be negative] (or equivalent) (1)	2			2		
		(ii)	1	Zero (1) No change in potential (or on same 'equipotential'). Do not accept r unchanged unless reference made to potential unchanged (1)	2			2			
			II	$\begin{aligned} & \Delta V=(-1.79)-(-1.31)(1) \\ & \text { Change in gravitational } E_{\mathrm{p}}=[-] 144 \mathrm{M}[\mathrm{~J}] \quad(1) \end{aligned}$		2		2	2		
		(iii)		V at Moon surface calculated $=-2.82 \mathrm{M}[\mathrm{J}]$ per $\mathrm{kg}(1)$ Loss in $E_{\mathrm{p}}=m \times 0.63 \mathrm{MJ}$ (ignore-ve sign) (1) ecf on V at Moon surface $\begin{align*} & 1 / 2 m v^{2}=m \times 0.63 \times 10^{6}(1) \\ & v=\left(1.26 \times 10^{6}\right)^{1 / 2}\left[\mathrm{~ms}^{-1}\right]=1.12 \times 10^{3}\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \tag{1} \end{align*}$ Alternative: E_{p} at $\mathrm{Moon}=-846 \mathrm{M}[\mathrm{J}]$ Total energy at $\mathrm{D}=-657 \mathrm{M}[\mathrm{J}]$ (1) Loss in E_{p} (gain in E_{k}) $=189 \mathrm{M}[\mathrm{J}]$ (1) $v=1.12 \times 10^{3}\left[\mathrm{~ms}^{-1}\right]$	1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		4	4		

Question		Marking details	Marks available				Maths	Prac	
		A01	AO2	AO3	Total				
8	(a)		Plastic Deformation: P1 - Reference to dislocations or incomplete planes of atoms P2 - Applied forces break bonds near to dislocations P3 - Dislocations slip P4-Original bonds permanently broken and do not reform or crystal does not return to original form when force removed Increasing Strength: S1- Foreign atom S2- Reduce grain size or increase number of grain boundaries S3- Further dislocations S4- Reason - how they work - inhibit dislocation movement 5-6 marks Comprehensive description including both plastic deformation and increasing strength typically 6 or more points covered. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Comprehensive description of either plastic deformation or increasing strength or brief description of both plastic deformation and increasing strength typically 4-5 points covered. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Brief description of either plastic deformation or increasing strength 1-3 points covered. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.	6			6		

Question		Marking details	Marks available				Maths	Prac	
		A01	AO2	AO3	Total				
(b)	(i)		$\text { CSA }=\pi \times\left(0.16 \times 10^{-3}\right)^{2}=\left[8.0 \times 10^{-8}\right]$ Gradient from graph $=4375$ or use of a point from the straight portion (1) $\text { Young Modulus }=\operatorname{grad} \times \frac{l}{A} \text { shown to be } 1.2 \times 10^{11} \mathrm{~Pa}$			3	3	3	3
	(ii)	0.2% strain corresponds to an extension of 4.4 mm (1) Area under graph calculated $=1 / 2 \times 4.4 \times 10^{-3} \times 18.5$ (1) [$W=0.04 \mathrm{~J}$]		2		2	2	2	
	(iii)	Straight line from end of graph (between $6-8 \mathrm{~mm}$) parallel to original line to x-axis. Tolerance: x-axis intercept between 0.4 4.0 mm .	1			1		1	
		Question 8 total	7	2	3	12	5	6	

A LEVEL COMPONENT 2: ELECTRICITY AND THE UNIVERSE
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	2	4	6	12	6	2
2	4	10	0	14	8	0
3	1	9	5	15	8	15
4	4	4	2	10	7	0
5	1	7	3	11	6	11
6	6	4	4	14	11	0
7	5	5	2	12	6	0
8	7	2	3	12	5	6
TOTAL	30	45	25	100	57	34

