GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL PHYSICS - COMPONENT 3 A420U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A LEVEL COMPONENT 3 - Light, Nuclei and Options

MARK SCHEME
GENERAL INSTRUCTIONS
The mark scheme should be applied precisely and no departure made from it.
Recording of marks
Examiners must mark in red ink.
One tick must equate to one mark (except for the extended response questions).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.
Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations
The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only ecf = error carried forward
bod = benefit of doubt

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
1	(a)			Constant phase difference [accept: relationship] (between the 2 sources) ['in phase' not enough]	1			1		
	(b)		Interference or diffraction (1) Provided evidence for wave behaviour (1) [NB. independent marks]	2			2			
	(c)	(i)	Using more than one fringe separation (1) Answer $=(0.80 \pm 0.03) \mathrm{cm}$ (1) [lgnore s.f.]		2		2	1	2	
		(ii)	Substitution into $\lambda=\frac{a y}{D}$ [or by implication] (1) Answer $=515 \mathrm{~nm}$ ecf from (i) (1) [accept 2 or 3 s.f.]	1	1		2	2	2	
		(iii)	Fringes are less bright [so more difficult to see] (1) [not: less clear or wider; not: fewer fringes will be seen] Separation of fringes is greater [can be measured with a smaller \% uncertainty] or qualified more accurate based on fringe spacing] (1)			2	2		2	
			Question 1 total	4	3	2	9	3	6	

Question			Marking details	Marks available				Maths	Prac
				A01	AO2	AO3	Total		
2	(a)		Use of Snell's law (1), e.g. $\sin 18.4^{\circ}=1.65 \sin \theta_{2}$ Manipulation or Answer $=11.0^{\circ}$ (1) accept $\sin ^{-1}\left(\frac{\sin 18.4^{\circ}}{1.65}\right)$ but not just 10°	1	1		2	1	
	(b)		$\begin{array}{lll} \phi=90-\theta(79 \text { or } 80)(1) & & \\ n_{2} \sin \theta_{2}=n_{3} \sin 90 \text { applied (1) } & \text { or } & n_{2} \sin 79=n_{3} \sin \theta \\ \text { Answer }=73.2^{\circ}(1) & \text { or } & \text { no solution for } \theta \end{array}$ Conclusion = Yes since ϕ greater than critical (1) [allow ecf on a calculated value of critical angle] or Yes refraction is impossible			4	4	3	
			Question 2 total	1	1	4	6	4	0

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
3	(a)			Photons have enough energy [or frequency or $h f$ high enough] (1) to emit / release electrons (from metal surface) (1) These arrive at the anode / [collecting] (\& give current) (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1		3		3
	(b)		Applying Einstein's equation i.e. $2.7+1.2(=3.9 \mathrm{eV})(1)$ Converting to Ji.e. $\times 1.6 \times 10^{-19}$ (1) Answer $=9.4 \times 10^{14} \mathrm{~Hz}$ (1) N.B. $5.9 \times 10^{33} \mathrm{~Hz} \rightarrow 1$ mark only	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
	(c)	(i)	Reverse polarity of supply [or equivalent, e.g. make collecting electrode negative / reversing the photocell] (1) [Increase pd] until current is [just] zero (1) Record the pd (from voltmeter) [or this is the stopping potential] (1)		3		3		3	
		(ii)	(Alpha particles +ve so) opposite current (1) Current zero at smaller pd (1) More accurate if light intensity large (accept any insightful comment e.g. obtain activity and compensate / measure the dark current) [Accept - wait for activity to decrease] (1)			3	3		3	
			Question 3 total	3	6	3	12	2	9	

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
6	(a)			N.B. no marks for beta and alpha Answer = 232 (1) Answer = 90 (1)		2		2		
	(b)		$\begin{aligned} & \text { Conversion to second }\left(\times 10^{9} \times 365 \times 24 \times 3600\right)\left[4.4 \times 10^{17}\right](1) \\ & \text { Use of decay constant }=\frac{0.693}{\text { half }- \text { life }}\left[1.6 \times 10^{-18} \mathrm{~s}^{-1}\right](1) \\ & \left.N=\frac{5.0 \times 10^{-3} \mathrm{~kg}}{3.9 \times 10^{-25} \mathrm{~kg}} \text { [allow } \frac{5 \times 10^{-3}}{232 \times 1.66 \times 10^{-27}}\right](1) \\ & \text { Use of } A=\lambda \times N(1) \\ & \text { Answer } \left.=20 \mathrm{kBq}((\text { unit }))(1) \text { (accept s }{ }^{-1} \text { for } \mathrm{Bq}\right] \\ & {\left[\text { Accept: correct answer in other units, e.g. } 1.7 \times 10^{9} \text { day }^{-1}\right.} \\ & \text { If not in } \mathrm{Bq} \text { and no unit 3max] } \end{aligned}$	1 1	1 1 1		5	4		
	(c)	(i)	Either Half-life around 3.8 throws (or get λ from equation or check that decreased by a sixth once) (1) $2 \times$ half-lives around 7.8 throws (or calculate another point using λ or check that decreased by a sixth again) (1) Expected activity as one sixth checked e.g. $\frac{6000}{6} \approx 1009$ (or check that reduced by a sixth for $3^{\text {rd }}$ occasion) (1) Considered conclusion - all is about right (1) Or Exp decay if same interval \rightarrow same fractional change (1) Calculation of fractional change for a given throw interval (1) Calculation of fractional change for two further same throw intervals (1) Conclusion: about right (1) Or Calculate $\lambda 3$ times using three different point \rightarrow conclusion NB conclusion only after legitimate work			4	4	3	4	

		(ii)	Smaller numbers involved (1) More [\%] random error expected (1) Question 6 total			2	2	
		2	5	6	13	7	6	

Question		Marking details	Marks available				Maths	Prac	
		A01	AO2	AO3	Total				
7	(a)		Mass can be converted to energy (or vice versa or $E=m c^{2}$) (1) So mass-energy cons used if change of mass (1) i.e. short concluding comment stating briefly mass-energy conservation (rather than simple energy conservation) also accept $m_{0} c^{2}+E$ conserved (or similar)	2			2		
	(b)	Baryon number OK $[1+1=5-3+1-1+0+0+0]$ or 2=2 (1) Accept U and D conservation : $4 \mathrm{U}+2 \mathrm{D}=4 \mathrm{U}+2 \mathrm{D}$ Or Quark number: $6=6$ Lepton number not $\mathrm{OK}[0+0 \neq 0+0+0+0+0+0+4]$ or $0 \neq 4$ (1) Charge conservation OK [1+1 = 5-3+0+0+2-2+0] or 2=2] (1) Mass energy not OK not enough energy to produce products (1) If not 4 correct conclusions 3max.			4	4			
		Question 7 total	2	0	4	6	0	0	

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
	5-6 marks Expect at least 6 points There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. 3-4 marks Expect 4-5 points There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks Expect 1-3 points There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.						
	Question 8 total	6	0	0	6	0	0

Question		Marking details	Marks available				Maths	Prac	
		A01	AO2	AO3	Total				
9	(a)		Conversion $4.32 \times 10^{6} \times 1.6 \times 10^{-19}$ i.e. $6.912 \times 10^{-13}[\mathrm{~J}]$ (1) Rearrangement for v i.e. $v=\sqrt{\frac{2 E}{m}}(1)$ Answer $=1.44 \times 10^{7} \mathrm{~ms}^{-1}(1)$		3		3	2	
	(b)	```24 total energy 'kicks' (or 2 per revolution) (1) 4.32 MeV divided by 24 (=180000) (1) Also need to divide by 2e, Answer = 90000 V (1) (2 marks for 180 kV, 1 mark for 360 kV, 2.16 MV ->1 mark)```		3		3	2		
	(c)	$\begin{aligned} & \text { Equating: } m \omega^{2} r=B q v \text { (1) or } \omega=\frac{B q}{m} \\ & \text { Rearrangement: } f=\frac{B q}{2 \pi m}(1) \text { By implication can give } 2 \text { marks } \\ & \text { for this } \\ & \text { Answer }=3.6 \mathrm{MHz} \text { (ecf on part (b) i.e. using } 1 e \text { instead of } 2 e \\ & 1.8 \mathrm{MHz})(1) \end{aligned}$		3		3	2		
		Question 9 total	0	9	0	9	6	0	

Question			Marking details	Marks available				Maths	Prac	
			A01	AO2	AO3	Total				
12	(a)			Metal filter to remove low energy X-rays (1) So they are not absorbed by tissue causing damage (1) Lead grid to absorb scattered X-rays (1) to increase contrast / reduce shadow areas (1)	4			4		
	(b)	(i)	$\begin{aligned} & Q=I t / \text { current is charge per second }(1) \\ & \text { no of electrons per second }=\frac{0.015}{1.6 \times 10^{-19}}=9.4 \times 10^{16}(1) \end{aligned}$	1	1		2	2		
		(ii)	Either: $\begin{aligned} & \text { Application of } e V=1 / 2 m v^{2} \\ & v=1.03 \times 10^{8} \mathrm{~ms}^{-1}(1) \\ & F=m v \times \text { no of electrons per } \mathrm{sec}=8.79 \times 10^{-6}[\mathrm{~N}](1) \end{aligned}$ Or: Application of $p=\sqrt{2 m E_{\mathrm{k}}}$ (1) Electron momentum $=9.35 \times 10^{-23} \mathrm{~N} \mathrm{~s}(1)$ $F=p \times$ no. of electrons per second $=8.79 \times 10^{-6}[\mathrm{~N}](1)$		3		3	3		
	(c)		MRI works and non ionising/time consuming/expensive-ish (1) (£500) PET works but ionising/expensive/limited availability/low resolution (1) ($£ 900$) Ultrasound B won't work/too much air reflection (1) ($£ 150$) CT works but ionising/expensive-ish (1) ($£ 500$) Conclusion all work except ultrasound but MRI best (1)			5	5			
	(d)	(i)	Kidney to check flow / Thyroid to check uptake (of iodine)/blood flow through the brain check for blockages /any other example	1			1			

Question			Marking details	Marks available				Maths	Prac	
			AO1	AO2	AO3	Total				
13	(a)			Centre of gravity/Weight of cyclist (and normal reaction) and bicycle acts though the base of the wheel	1			1		
	(b)	(i)	The moment of inertia about an axis is the sum (1) Of mass \times radius 2 (distance from the axis) (1) Or $I=\sum m r^{2}$ and symbols explained - see above (1) accept Moment (1) per unit angular acceleration (1)	2			2			
		(ii)	$\begin{aligned} & \text { Calculating } \mathrm{M} \text { of } \mathrm{I}=\frac{1}{12} 60 \times 1.68^{2}=14.112 \mathrm{~kg} \mathrm{~m}^{2}(1) \\ & \text { Rearranging } \omega=\frac{J}{I}=\frac{92.1}{14.112} \text { (1) } \\ & \text { Angular velocity }=6.53 \mathrm{rads}^{-1} \text { (1) } \end{aligned}$		3		3	2		
		(iii)	Applying conservation of angular momentum (1) Substitution of values $\omega=\frac{92.1}{2.7}$ (1) Angular velocity $=34.1 \mathrm{rad} \mathrm{s}^{-1}$ (1)	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
	(c)	(i)	```Substitution into torque \(\tau=I \alpha\) or \(\tau=\frac{\Delta(I \omega)}{t}\) or \(\tau=\frac{I \Delta \omega}{t}(\) (1) Substitute values for \(\alpha=\frac{220-170}{0.310}\) or \(\Delta(I \omega)=1.10 \times(-50)\) [ignore sign] (1) \(\tau=177 \mathrm{Nm}\) (1)```	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		
		(ii)	$\begin{aligned} & \text { Substitution into rotational } \mathrm{KE}=\frac{1}{2} I \omega^{2}(1) \\ & \text { Factor } \times 4 \text { (four wheels) }(1) \\ & \text { Rotational KE lost }=42.9 \times 10^{3} \mathrm{~J}(1) \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	2		

Question	Marking details	Marks available				Maths	Prac
		AO1	AO2	AO3	Total		
(d)	Converting $\mathrm{km} \mathrm{hr}^{-1}$ to ms^{-1} correctly (1) Substituting values in $F=\frac{m v-m u}{t}$ or $a=\frac{v-u}{t}$ (1) $F=64.5 \mathrm{kN}$ or 58 kN for car or 6.4 kN for driver or $a=90.9 \mathrm{~ms}^{-2}(1)$ Acceleration/Force is large/Need to reduce F or a (1) Grass or gravel area will increase the time or slow down before impact with wall etc.(1)			5	5	2	
	Question 13 total	6	9	5	20	10	0

Question				Marking details	Marks available				Maths	Prac	
				A01	AO2	AO3	Total				
14	(a)	(i)			Object totally or partially immersed in a fluid (accept liquid or gas) is buoyed (accept lifted, upward force, upthrust) by a force equal to the weight of the displaced fluid	1			1		
		(ii)	(I)	Volume $=1.5 \times 10^{6} \times 2.1=3.15 \times 10^{6} \mathrm{~km}^{3}$ and correct conversion of units seen (e.g $3.15 \times 10^{15} \mathrm{~m}^{3}$) (1) Mass $=920 \times 3.15 \times 10^{15}=2.9 \times 10^{18} \mathrm{~kg}$ seen (1)		2		2	2		
			(II)	Volume of water produced $=\frac{2.9 \times 10^{18}}{10^{3}}\left(=2.9 \times 10^{15} \mathrm{~m}^{3}\right)$ (1) (accept $3.0 \times 10^{15} \mathrm{~m}^{3}$ if value given used) Sea level rise $=\frac{2.9 \times 10^{15}}{3.6 \times 10^{14}}=8.05(\mathrm{~m})$ (seen) (or 8.3 if $3.0 \times$ $10^{18} \mathrm{~kg}$ used) (1)			2	2	2		
	(b)	(i)		Mass of air (per second) $=\rho A u(1)$ Convincing substitution into $1 / 2 \mathrm{mu}^{2}$ (1)	2			2			
		(ii)		Doubling blade length will increase power by a factor of 4 (accept 2^{2}) (1) Doubling speed will increase power by a factor 8 (accept 2^{3}) (1)		2		2			
		(iii)		Either Correct substitution and power calculated for either input or output power: i.e. input $P=0.87 \mathrm{MW}$, Output $P=$ 0.21 MW Or $P_{\text {IN }}=\frac{1}{2} \pi \times 30^{2} \times 1.2 \times\left(8^{3}-5^{3}\right)$ (1) $\mathrm{P}_{\text {IN }}$ calculated $(0.87-0.21=0.66)$ (1) (ecf for either or both powers]. $\begin{aligned} & \% \text { efficiency }=\left(\frac{0.66}{0.87}\right) \times 100=75.9 \% \text { [accept } 76 \%, 0.759 \text { or } \\ & 0.76](1) \end{aligned}$		3		3	2		
		(iv)		Friction between moving parts (in the turbine). Don't accept 'heat', 'sound'.			1	1			

Question		Marking details	Marks available				Maths	Prac	
		A01	AO2	AO3	Total				
(c)	(i)		All units correctly identified: $\frac{\Delta Q}{\Delta t}: \mathrm{J} \mathrm{s}^{-1} ; A: \mathrm{m}^{2} ; \frac{\Delta \theta}{\Delta x}: \mathrm{Km}^{-1}$ (1) Correct substitution and convincing algebra	2			2		
	(ii)	Understanding shown that heat flow through both materials is the same (even if substitution below incorrect) (1) Either $\begin{equation*} \frac{0.06 \times A \times\left(18-\quad \theta_{3} 0.9 \times \frac{x(4-8)_{\mathrm{B}}}{8}\right.}{120} \tag{1} \end{equation*}$ Convincing algebra to show $\theta_{\mathrm{B}}=13^{\circ} \mathrm{C}$ (1) Or With $13^{\circ} \mathrm{C}$: Carpet heat flow $/ \mathrm{m}^{2}=37.5 \mathrm{~W} \mathrm{~m}^{-2}$ or Concrete heat flow / $\mathrm{m}^{2}=37.5 \mathrm{~W} \mathrm{~m}^{-2}$ (1) Other heat flow shown to be the same, thus confirming (1)	1			3	2		
	(iii)	Either carpet: $\frac{\Delta Q}{\Delta t}=\frac{0.06 \times 48 \times 5}{0.008}$ [or 48×37.5] or concrete: $\frac{\Delta Q}{\Delta t}=\frac{0.9 \times 48 \times 5}{0.12}$ [or 48×37.5] (1) $=1.8 \mathrm{~kW}=50 \% \therefore$ claim verified (1)			2	2	2		
		Question 14 total	6	9	5	20	10	0	

A LEVEL COMPONENT 3: Light, Nuclei and Options - SUMMARY OF ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	4	3	2	9	3	6
2	1	1	4	6	4	0
3	3	6	3	12	2	9
4	7	6	0	13	7	0
5	3	6	6	15	3	9
6	2	5	6	13	7	6
7	2	0	4	6	0	0
8	6	0	0	6	0	0
9	0	9	0	9	6	0
10	2	9	0	11	3	0
11	6	9	5	20	10	0
12	6	9	5	20	10	0
13	6	9	5	20	10	0
14	6	9	5	20	10	0
TOTAL	36	54	30	120	45	30

A420U30-1 EDUQAS A LEVEL PHYSICS - COMPONENT 3
SUMMER 2018 MS

